
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
Stability of the two- and three-dimensional kink solutions to the Cahn-Hilliard equation

David Bettinson and George Rowlands
Department of Physics, University of Warwick, Coventry, Warwick CV4 7AL, England

~Received 17 December 1996!

We give an analysis of the Cahn-Hilliard equation, which admits both cylindrically and spherically sym-
metric, stationary kink solutions. Since analytic expressions for these solutions are unobtainable in closed
form, we devise an approximate method of solution taking the radius as large and scaling variables in its
reciprocal. To lowest order, the solution is that of the one-dimensional kink solution which has been analyzed
in earlier work. In this paper we begin by investigating the stability of the cylindrically symmetric kink
solution to small perturbations involving angular andz dependence. It is found that the solution is stable to
perturbations involving angular variation, but is unstable to a general perturbation. We go on to show that the
spherically symmetric kink solution is stable to all small perturbations.@S1063-651X~97!15605-7#

PACS number~s!: 64.60.2i, 02.90.1p, 02.30.Mv
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I. INTRODUCTION

Pattern formation resulting from a phase transition is
served in alloys, glasses, polymer solutions, and binary
uid mixtures. We are interested in such materials, and c
sider a two-component system~comprising of components
A andB), where a phase transition is induced by quench
the system to below some critical temperatureTc . To study
the dynamics of the subsequent concentration of each c
ponent, we use the nonlinear equation first proposed by C
and Hilliard@1#. Early linear treatments of this equation ga
unphysical results, and more involved formulations we
preferred to the full nonlinear version. We use this origin
nonlinear equation in an attempt to ascertain how accu
this continuum model is in describing the stability of partic
lar patterns which have been observed experimentally
numerically. We are encouraged by the results of sev
authors, including those of Ref.@2#, who found that the
Cahn-Hilliard equation gives a qualitatively correct descr
tion of both the early and late stages of spinodal decom
sition. The equation studied is

ut5¹2FdFdu2¹2uG , ~1!

where u is the relative concentration of each compone
ranging from21 ~all A) to11 ~all B). The subscript denote
partial differentiation with respect tot, while F is the free
energy which we assume to be given by

F~u!5 1
4 ~12u2!2. ~2!

For further physical background, derivation, and disc
sion of this equation, see@3–5#, and references therein. Th
one-dimensional case is reviewed in@3#, @6–8#. A stationary
kink solution is found, and in@6,7#, it is shown to be stable to
perpendicular perturbations of all wavelengths. In@7# it is
shown that a more general free energy, leads only to qua
tative differences in results.
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II. PROBLEM IN CYLINDRICAL GEOMETRY

A. Stationary solution

If we look for a stationary solution to Eq.~1!, the equation
to be solved is

ue
32ue2¹2ue1C50, ~3!

which in cylindrical coordinates, with nou or z dependence,
can be written as

d2ue
dr2

1
1

r

due
dr

2ue
31ue5C, ~4!

whereC is an arbitrary constant of integration. Unfortunate
there is no solution to Eq.~4! in a closed form. We obtain an
approximate solution by moving into a new frame of refe
ence, lettingr5R1x, whereR is some large constant, whic
we take as the value ofr whereue50. Using this in Eq.~4!,
we may write

d2ue
dx2

1ue2ue
31«~12«x1«2x21••• !

due
dx

5C, ~5!

where«51/R and is some small constant. We now expa
ue andC in «, so that

ue5ue01«ue11«2ue21O~«3!,

C5C01«C11«2C21O~«3!. ~6!

To lowest order in«, Eq. ~5! becomes

d2ue0
dx2

1ue02ue0
3 5C0 , ~7!

and for a kink-type solution to exist wemust set C050.
Then from Eq.~7! it is found thatue05tanh(x/A2) if we
insist thatue050 whenx50 (r5R).

To first order in«, Eq. ~5! becomes

L0ue15C12
1

A2
sech2

x

A2
, ~8!
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5428 55DAVID BETTINSON AND GEORGE ROWLANDS
whereL05d2/dx21@3sech2(x/A2)22#. The method used
to solve Eq.~8! is that given in@9#. This method is applied
using the computer programMATHEMATICA @10#. The solu-
tion must be bounded asr→1` andr→0, or asx→` and
x→2R. Since R is large, we insist that the solution i
bounded asx→6`, and in doing so find thatC15A2/3,
and

ue152
1

3A2
tanh2

x

A2
. ~9!

Thus we are able to write the following approximate expr
sion for the stationary solution:

ue5tanh
x

A2
2

1

3A2R
tanh2

x

A2
1OS 1R2D . ~10!

This is plotted in Fig. 1 forR510.4, and, when compare
to numerically produced stationary solutions, we find o
solution has an error of less than 0.8%~see Fig. 2!.

B. Perturbing the stationary solution

To perturb about the stationary solution, we substit
into Eq.~1!, u5ue1du(r )eimu1 ikzz1gt. Neglecting products
of du, we find that

¹2@¹21~123ue
2!#du52gdu, ~11!

FIG. 1. Approximation to the stationary solution (R510.4).

FIG. 2. Percentage error in approximate stationary solu
(R510.4).
-

r

e

which is the linear Cahn-Hilliard equation. This has a m
ginally stable (g50) solution whenm51 andkz50. This is
shown by differentiating Eq.~4! with respect tor , and then
comparing to Eq.~11! with g50, anddu5due /dr.

Since we have derived an approximate stationary solu
by letting r5x1R and takingR as some large constant, w
apply the same method to Eq.~11!. Begin by considering
¹2. Now ¹25d2/dr21(1/r )(d/dr)2m2/r 22kz

2 , but if we
make the substitutionr5R1x, we obtain

¹25¹0
21«¹1

21«2¹2
21O~«3!

5S d2dx2
2k2D1«F ddx12xSmRD 2G

2«2xF ddx13xSmRD 21O~«3!G , ~12!

where 1/R5« andk25(m/R)21kz
2 . We now go on to order

g anddu in «,

g5g~0!1«g~1!1O~«2!, du5du~0!1«du~1!1O~«2!.

~13!

We are now equipped to study Eq.~11! at various orders in
«.

C. Small-k analysis

SinceR is a large constant, we start by consideringm/R
as small, and if we also considerkz as small, thenk can be
considered small. So for eachg ( i ) anddu( i ) we introduce an
ordering ink, namely,

g~0!5g0
~0!1kg1

~0!1O~k2!,

du~0!5du0
~0!1kdu1

~0!1O~k2!. ~14!

It is found that to zeroth order in«, Eq. ~11! is

¹0
2Ldu~0!52g~0!du~0!, ~15!

where L5¹0
21@3sech2(x/A2)22#. Now we have already

shown thatg50 whenm51 andkz50. This implies that
g (0)50 when k51/R5«. This effectively means tha
k50, ask is now included at a higher order in«. Thus Eq.
~15! has a marginally stable solution whenk50. This equa-
tion has been solved forg (0) for small and largek in @6# and
@7#, and a Pade´ approximation found as a complete expre
sion in @7#. For smallk,

g~0!52
A2
3
k32 11

18k
41O~k5!, ~16!

and it is also found thatdu0
(0)5sech2(x/A2), du1

(0)50, and
du2

(0)5 1
3.

We now use Eq.~15! to find the adjoint operatorc. Begin
by multiplying Eq.~15! by c and integrating over all space

E
2`

`

c¹0
2Ldu~0!dx52g~0!E

2`

`

cdu~0!dx. ~17!n
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The left-hand side of Eq.~17! is now integrated by parts to
leave

E
2`

`

du~0!L¹0
2cdx52g~0!E

2`

`

du~0!cdx, ~18!

and thus the adjoint equation is

L¹0
2c52g~0!c. ~19!

If we operate on this adjoint equation with¹0
2, comparison to

Eq. ~15! shows that

¹0
2c5du~0!. ~20!

To first order in«, the linear equation~11! is

¹0
2Ldu~1!1g~0!du~1!5¹0

2~6ue0ue12¹1
2!du~0!2¹1

2Ldu~0!

2g~1!du~0!. ~21!

Using a similar technique to that employed in@6# for deter-
mining the stability of the one-dimensional kink solution, w
multiply Eq. ~21! by c and integrate over all space. Wit
some manipulation, it can be shown that

g~1!5@26g~0!^ue0ue1~du~0!!2&1g~0!^du~0!¹1
2du~0!&

2^Ldu~0!¹1
2Ldu~0!&#/^du~0!Ldu~0!&, ~22!

where the angled brackets^&, denote integration over allx.
We now observe that in the numerator of Eq.~22! all of the
integrals are of odd functions, and sog (1)50 for all k. This
result is used in Eq. ~21!, and it is found that
du0

(1)52(A2/3)sech2(x/A2)tanh(x/A2), du1
(1)50, and

L0du2
(1)522xsech2(x/A2)2(A2/3)tanh(x/A2).

Now Eq.~11! to second order in« is multiplied byc, and
integrated over all space, to give

^du~0!Ldu~0!&
g~0! g~2!5^c¹1

2Ldu~1!&2^c¹1
2~6ue0ue1

2¹1
2!du~0!&2^du~0!~6ue0ue1

2¹1
2!du~1!&1^c¹2

2Ldu~0!&2^du~0!

3~6ue0ue213ue1
2 2¹2

2!du~0!&. ~23!

Note here that all the integrals are of even functions, and
will contribute to the answer.

We now consider Eq.~23! to the lowest two orders ink.
To do this we need to know the adjoint functionc. We can
write Eq. ~20! as

c5~¹0
2!21du~0!, ~24!

and so require the Green’s function for the opera
(¹0

2)21. It is found to be given by

G~x;x8!52
e2kux2x8u

2k
, ~25!

and so we write
o

r

c52
1

2kE2`

`

du~0!~x8!e2kux2x8udx8

52
A2
k

1 f ~x!1O~k!, ~26!

where f (x) is some function ofx.
We now consider each definite integral of Eq.~23! sepa-

rately to the two lowest orders ink. The first such integral is

^du~0!Ldu~0!&
g~0! 5

1

g~0! ^~du0
~0!1k2du2

~0!!~L02k2!

3~du0
~0!1k2du2

~0!1k3du3
~0!!&

5
1

g~0! ^du0
~0!~k2L0du2

~0!1k3L0du3
~0!

2k2du0
~0!!&

52
k2

g~0! ^~du0
~0!!2&52

4A2k2

3g~0! . ~27!

Now it can be shown that

^c¹1
2Ldu~1!&5v11k~v22

4
3 !

3^c¹1
2~6ue0ue12¹1

2!du~0!&

5v11k~v22
4
3 !, ~28!

where v1 and v2 are some constants. This result becom
obvious if we consider Eq.~21! to the lowest two orders in
k, namely,

¹0
2Ldu~1!5¹0

2~6ue0ue12¹1
2!du~0!, ~29!

and, neglecting constants of integration, this becomes

Ldu~1!5~6ue0ue12¹1
2!du~0!, ~30!

which validates the result in Eq.~28!. We proceed to con-
sider the next definite integral, namely,

^du~0!~6ue0ue12¹1
2!du~1!&5^du0

~0!~6ue0ue12¹1
2!du0

~1!&

5
16A2
63

1O~k2!, ~31!

where there is no contribution at orderk because
du1

(0)5du1
(1)50. The next definite integral to consider is

^c¹2
2Ldu~0!&5K S 2

A2
k

1 f D F2x
d

dx
23x2SmRD 2G

3~L02k2!~du0
~0!1k2du2

~0!!L
5A2kK x d

dxS 2
2

3D L 5O~k2!. ~32!

Finally,
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^du~0!~6ue0ue213ue1
2 2¹2

2!du~0!&

5^du0
~0!~6ue0ue213ue1

2 2¹2
2!du0

~0!&

52
100A2
63

1O~k2!, ~33!

where again there is no contribution at orderk because
du1

(0) is equal to zero.
We put these results into Eq.~23! to find that to the first

two orders ink,

g~2!52
g~0!

k2
5

A2
3
k1

11

18
k2. ~34!

We continue to consider the linear Cahn-Hilliard equat
~11! to higher orders in«. To order«3, we again multiply the
equation byc and integrate over allx. Many of the definite
integrals are zero due to the functions being odd, and we
left with g (3)50 for all k.

Using the same procedure on the linear equation to fo
order in«, we find that

g~4!52
k

4S ^cg~x!&1
2

3
^du0

~2!& D , ~35!

where g(x) is some known function. Thus from this it i
clear thatg0

(4)50.
We now combine our growth rate results and find that

g52
A2
3
k32

11

18
k41O~k5!1«2SA23 k1

11

18
k21O~k3! D

1«4O~k!1O~«5!

52
A2
3 S kz21 m2

R2 D 1/2S kz21 m221

R2 D
3S 11

11

6A2
S kz21 m2

R2 D 1/2D 1OS k5,k3R2 ,
k

R4 ,
1

R5D . ~36!

Thus clearly a marginally stable state exists whenm51 and
kz50, and whenm50 andkz50, in agreement with genera
statements made above. Note that it is unphysical to cons
perturbations wherem50 andkz50, since here the pertur
bations are purely radial, and so break the law relating
conservation of mass in the system. Form.1, g,0, imply-
ing stability.

However, form[0, we see thatg can be positive and
hence the equilibrium is unstable ifkz

2R2,1. This result is
confirmed if we return to the analysis of Eq.~11!, insist that
m[0, and introduce an ordering such thatk[kz5« k̄z . If
this is performed, Eq.~12! becomes

¹25
d2

dx2
1«

d

dx
2«2S x d

dx
1 k̄z

2D1«3x2
d

dx
1O~«4!.

~37!

So, to lowest order in«, Eq. ~11! becomes

d2

dx2
L0du

~0!52g~0!du~0!, ~38!
re

th

er

o

which has the solutiondu(0)5sech2(x/A2), and g (0)50.
From Eq. ~20! it is seen that the adjoint functionc is no
longer bounded. This implies that we can no longer multip
the linear equation, at each order in«, by c, and integrate
over all x, as we have done previously. Instead we use
asymptotic matching method similar to that used in@7#. Here
we consider the asymptotic solution of the linear equat
~11!, at each order in «. It is found that g (0)

5g (1)5g (2)50, and neglecting terms of ordere2A2x and
higher, that

lim
x→`

du5 d̄u}12
3g~3!«x

A2~12 k̄z
2!

1O~«2!. ~39!

We now note that

lim
x→`

¹25
d2

dx2
2«2k̄z

2 . ~40!

If we also assume that limx→`du5 d̄u}elx, we find that
asymptotically Eq.~11! becomes

~l22«2k̄z
2!~l2221O~«!!50. ~41!

In this method we only consider terms which decay slow
asx→`, and so we choosel52« k̄z . Thus we can write

d̄u}e2« k̄ zx512« k̄zx1O~«2!. ~42!

Comparison of this result to that in Eq.~39! shows that

g5
A2k̄z
3R3 ~12 k̄z

2!1OS 1R4D , ~43!

which is in agreement with Eq.~36!. From Eq.~43! it can be
shown that to lowest order in 1/R, the maximum growth rate
is achieved whenkz51/(A3R).

Also if kz50, andm/R is written as«m rather thank, it
is found that, up to order«2, ¹2 is as given in Eq.~37! but
with k̄z replaced bym. Thus again we apply the asymptot
method used in@7#, and find that to lowest order in 1/R the
growth rate of perturbations is given by Eq.~43!, with k̄z
replaced bym. This is verified by settingkz50 in Eq. ~36!.
Note here, thatg is never positive, sincem only takes integer
values. The above analysis confirms the general form fog
given by Eq.~36!.

So we have shown that the stationary solution is stable
perturbations which involve any angular variation (mÞ0,
kzÞ0), but, for a radial perturbation (m50) varying along
the axis of the cylinder, the stationary solution is unstable
kzR,1. The growth rateg, for a particular value ofR, is
plotted in Fig. 3.

D. Large-k analysis

In this section we consider solutions of Eq.~11! for k
large. Unfortunately the analysis is not trivial, and so w
must break the problem intokz large and~a! m50, ~b! m of
order 1,~c! m large.
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For m50, we find that the problem reverts back to t
one-dimensional case, with a correction at order«2. It is
found that

g

kz
4 5211

1

kz
2S gc

~0!1
gc

~2!

R2 D 1OS 1kz3 , 1R3D , ~44!

wheregc
(0)5(32A13)/2, and in principlegc

(2) can be found.
Form of order 1, we find that Eq.~44! holds, but with a

slight correction at order«2 due to the finite value ofm. It is
found that

g

kz
4 5211

1

kz
2S gc

~0!1
gc

~2!12m2

R2 D 1OS 1kz3 , 1R3D , ~45!

wheregc
(0) is as above.

Form large we considerm/R to be of order 1. This alters
the zeroth-order result in«, which becomes

g~0!

kz
4 5211

gc
~0!

kz
2 , ~46!

wheregc
(0)5(32A13)/222(m/R)2. From this we see tha

for m large the stability is increased. Thus we see from th
three cases that the stationary solution is stable forkz large
along with any value ofm.

III. PROBLEM IN SPHERICAL GEOMETRY

We begin by looking for a stationary solution to Eq.~1!.
The equation to be solved is

d2ue
dr2

1
2

r

due
dr

2ue
31ue5C. ~47!

Comparison with Eq.~4! shows how similar this is to the
cylindrically symmetric problem. Again we make the subs
tution r5R1x, and find that there is no difference to zero
order in«. It can be shown that

FIG. 3. Growth rate@g5g(m,kz)2g(m,0)# againstk5kz for
R53, and three different values ofm. Graph a corresponds to
m50. Graph b corresponds tom51; graph c corresponds to
m52.
e

-

ue5tanh
x

A2
2

A2
3R

tanh2
x

A2
1OS 1R2D . ~48!

To perturb about this stationary solution in spherical geo
etry, we make the substitution

u5ue1du~r !~sinumuu!Fl~cosu!egt1 imf ~49!

into Eq. ~1!. Here Fl is the associated Legendre functio
where l takes the valuesumu,um11u,um12u, . . . . Thesub-
sequent equation is the linear Cahn-Hilliard equatio
namely

¹2@¹21~123ue
2!#du52gdu, ~50!

which is as in Eq.~11!, but now

¹25
d2

dr2
1
2

r

d

dr
2

a

r 2
, ~51!

wherea5 l ( l11) andue is now thesphericallysymmetric
stationary solution. It can be shown that Eq.~50! has a mar-
ginally stable solution whena52 (l51). Clearly the prob-
lem is similar to that in cylindrical geometry, and, usin
either the consistency condition or asymptotic method, i
found that the growth rate is given by

g52
A2
3R3Al ~ l11!~ l21!~ l12!1OS 1R4D , ~52!

which is valid for Al ( l11),R. We see that, if l51,
g50, which verifies the statement above. Also ifl50,
g50, which, as shown for cylindrical geometry, correspon
to the unphysical case of a purely radial perturbation. F
Al ( l11)@R, it can be shown that, to lowest order,

g52
l 2~ l11!2

R4 . ~53!

From this we see thatg,0 for Al ( l11).R, and so, for
l.1, the spherically symmetric solution is stable.

IV. CONCLUSIONS

We have considered the existence and stability of b
cylindrically and spherically symmetric kink solutions to th
Cahn-Hilliard equation. In both cases, this is done by c
sidering the radiusR of the solution as large, and scaling th
variables in its reciprocal. To lowest order we effective
assume thatR→1`, and so the curvature of the solutio
tends to zero. Thus here we revert back to the o
dimensional case, which has a stationary kink solution. T
has been shown, in earlier papers, to be stable. We go o
higher orders in 1/R, andg is determined via two indepen
dent methods, namely, a consistency condition and
asymptotic method, similar to those applied to the on
dimensional equation in@6# and @7#, respectively.

We show that the cylindrically symmetric solution
stable for allm andkz , of angular andz-dependent pertur-
bation, unlessm50 andkz

2R2,1. Thus for ageneralpertur-
bation, this stationary solution isunstable. In contrast, it is
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found that the spherical equivalent is always stable. We
sume that the unstable cylindrically symmetric solution d
cays to one or more spherically symmetric states. A sim
behavior has been found for a different physical situation
s-
-
r
y

Frycz, Infeld, and Samson@11#. In summary, our analysis
suggests that under certain conditions, the cylindrically sy
metric solution will pass through an unstable state, and t
to one or more stable, spherically symmetric solutions.
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