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Stability of the two- and three-dimensional kink solutions to the Cahn-Hilliard equation
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(Received 17 December 1996

We give an analysis of the Cahn-Hilliard equation, which admits both cylindrically and spherically sym-
metric, stationary kink solutions. Since analytic expressions for these solutions are unobtainable in closed
form, we devise an approximate method of solution taking the radius as large and scaling variables in its
reciprocal. To lowest order, the solution is that of the one-dimensional kink solution which has been analyzed
in earlier work. In this paper we begin by investigating the stability of the cylindrically symmetric kink
solution to small perturbations involving angular andependence. It is found that the solution is stable to
perturbations involving angular variation, but is unstable to a general perturbation. We go on to show that the
spherically symmetric kink solution is stable to all small perturbatip84063-651X97)15605-1

PACS numbdss): 64.60—i, 02.90+p, 02.30.Mv

I. INTRODUCTION II. PROBLEM IN CYLINDRICAL GEOMETRY
. . e A. Stationary solution
Pattern formation resulting from a phase transition is ob- _ i . _
served in alloys, glasses, polymer solutions, and binary lig- If we look for a stationary solution to E1), the equation
uid mixtures. We are interested in such materials, and corfo be solved is
sider a two-component systefoomprising of components
A andB), where a phase transition is induced by quenching
the system to below some critical temperatiite To study which in cylindrical coordinates, with né or z dependence,
the dynamics of the subsequent concentration of each com. ;
X S an be written as

ponent, we use the nonlinear equation first proposed by Cahn
and Hilliard[1]. Early linear treatments of this equation gave d?u. 1du

. . . e e 3
unphysical results, and more involved formulations were ar? +FW_UG+ Ue=C, (4)
preferred to the full nonlinear version. We use this original

nonlinear equation in an attempt to ascertain how accurat@hereC is an arbitrary constant of integration. Unfortunately
this continuum model is in describing the stability of particu- there is no solution to Ed4) in a closed form. We obtain an
lar patterns which have been observed experimentally angpproximate solution by moving into a new frame of refer-
numerically. We are encouraged by the results of severadnce, letting = R+ x, whereR is some large constant, which

Cahn-Hilliard equation gives a qualitatively correct descrip-ye may write

tion of both the early and late stages of spinodal decompo-
sition. The equation studied is d?u,

dx?

ud—ue— V2ug+C=0, (3)

du
FUe— U+ e(1—ex+e22+-- -)d—XeIC, 5

(1) Wheree=1/R and is some small constant. We now expand
Ue andC in g, so that

utzvz[m—vzu

; ; . ue:ue0+£uel+82ue2+o(83)y
where u is the relative concentration of each component,

ranging from—1 (all A) to +1 (all B). The subscript denotes C=Cy+8Cy+82C,+0(s%). (6)
partial differentiation with respect tg while F is the free
energy which we assume to be given by To lowest order ire, Eq. (5) becomes
d2ue 5
F(u)= 3(1-ud?2 2) o5& U Ueo=Co, (7

For further physical background, derivation, and discus—and for a kink-type solution to exist weustset Co=0.
sion of this equation, sg8-5|, and references therein. The _Then from Eq.(7) it is found thatug=tanht/\2) if we

one-dimensional case is reviewed[81, [6—8]. A stationary nsist thatUEO_o _WhenX—O (r=R).

kink solution is found, and if6,7], it is shown to be stable to To first order ine, Eq. (5) becomes

perpendicular perturbations of all wavelengths.[H it is 1 "

shown that a more general free energy, leads only to quanti- LoUg=C;— —sech—, (8)
tative differences in results. JZ$ \/5
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u which is the linear Cahn-Hilliard equation. This has a mar-
ginally stable ¢y/=0) solution wherm=1 andk,=0. This is
shown by differentiating Eq4) with respect tar, and then
osh comparing to Eq(11) with y=0, andsu=du,/dr.
Since we have derived an approximate stationary solution
by lettingr =x+R and takingR as some large constant, we
- + + + = = 2 r apply the same method to E¢ll). Begin by considering
V2. Now V2=d?/dr?+ (1/r)(d/dr)—m?/r?— k2, but if we
make the substitution=R+ X, we obtain

V2=V2+eVi+£2V3+0(&d)

" d? d m)?
= W_kz +e &+2X ﬁ
FIG. 1. Approximation to the stationary solutioR€ 10.4).
d 2
where Ly=d?/dx?+[3secR(x/\2)—2]. The method used —&%x xR +0(&%)|, (12

to solve Eq.(8) is that given in[9]. This method is applied

using the computer programATHEMATICA [10]. The solu-  \yhere 1R=¢ andk?=(m/R)?+k2. We now go on to order
tion must be bounded as- + % andr—0, or asx— and y anddu in e

x——R. SinceR is large, we insist that the solution is
bounded ask— *, and in doing so find tha€,=2/3, y=7Y+eyP+0(e?), du=u?+esuP+0(?).

and (13)

1 X We are now equipped to study Ed.1) at various orders in
U= — —=tanif—. 9 &
32 2

Thus we are able to write the following approximate expres- C. Smallk analysis

sion for the stationary solution: SinceR is a large constant, we start by consideringR
as small, and if we also considky as small, therk can be

e tanh e — 1 tanf—— +0 i) (10) considered small. So for eagh” and su®) we introduce an
e V2 3\2R 2 R/ ordering ink, namely,
This is plotted in Fig. 1 foR=10.4, and, when compared YO= v +ky? +0(k?),
to numerically produced stationary solutions, we find our
solution has an error of less than 0.8%ee Fig. 2 su@=sul +ksu®+0(k?). (14)
B. Perturbing the Stationary solution It is found that to zeroth order iB, Eq (11) is
To perturb about the stationary solution, we substitute V(z)Lgu(O):_yw)&u(O), (15)

into Eq. (1), u=ug+ du(r)e'™f*kz*+ 1 Neglecting products

of du, we find that where L=V3+[3secf(x/\2)—2]. Now we have already

VZ[V2+(1—3U§)]5U= — ysu, (11) shown thaty=0 whenm=1 and kZ=0..This implies that
y®=0 when k=1/R=¢. This effectively means that
k=0, ask is now included at a higher order in Thus Eq.
(15) has a marginally stable solution whir-0. This equa-
tion has been solved foy(®) for small and largé in [6] and
[7], and a Padapproximation found as a complete expres-

0.6 sion in[7]. For smallk,

(0) = \/E

0.4 Y —?ks—%kA'f'O(ks), (16)

% error

and it is also found thasu{®=sect(x/+2), su{”’=0, and
Sul0)=1,
We now use Eq(15) to find the adjoint operatap. Begin
. by multiplying Eq.(15) by ¢ and integrating over all space,

2 4 6 8 10 12

FIG. 2. Percentage error in approximate stationary solution Jw szSL&u(O)dX:—y(O)fw you@dx. (17
(R=10.4). — —
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The left-hand side of Eq17) is now integrated by parts to

leave
f_ SuOLV3ydx= —y<°>f_ Su©@ ydx, (18)
and thus the adjoint equation is
LVGy=—+y. (19

If we operate on this adjoint equation wrﬂﬁ, comparison to
Eq. (15) shows that
Vay=6u®, (20)
To first order ing, the linear equatioill) is
VaLsuW + 0 5uM=V3(6uUgue; — V3) 6u® — ViL 5u©
— W@ (21)

Using a similar technique to that employed| 8] for deter-

mining the stability of the one-dimensional kink solution, we
multiply Eqg. (21) by ¢ and integrate over all space. With

some manipulation, it can be shown that
=[ 67 V(UegUer(8u?)?) + ¥ O(su®VF5u(®)

—(LuOV2L su©@)]/(su@Lsu®)y, (22)
where the angled bracket$, denote integration over aX.
We now observe that in the numerator of E22) all of the
integrals are of odd functions, and $6"=0 for all k. This
result is used in Eqg.(21), and it is found that
suf=—(\2/3)sech(x/2)tanh/y2), suM'=0, and
Looust = —2xsech(x/ \/5)—(\/5/3)tanhé</\/—).

Now Eg.(11) to second order im is multiplied by, and
integrated over all space, to give

(UL 5u @)
Ty<2>=<¢V§L6u“>>—<w%<6ueoue1

= VD ou@) = (8u® (Bugoles
= V2 suMy + (V3L ou @) —(u®
V3)6u'?).

X (BUggUep+ 3U2; — (23)

Note here that all the integrals are of even functions, and so

will contribute to the answer.

We now consider Eq(23) to the lowest two orders ik.
To do this we need to know the adjoint functign We can
write Eq.(20) as

Y=(V3) tou®, (24)

and so require the Green’s function for the operator

(V3)~L. Itis found to be given by
—k|x—x'|

G(x;X') =~ ———, (25

and so we write

5429
1 * ’
Y=— ﬂj 5u(0)(xl)e—k|x—x ldx’
2
= —\/T_—l—f(x)-l-O(k), (26)

wheref(x) is some function ok.
We now consider each definite integral of Eg3) sepa-
rately to the two lowest orders i The first such integral is

(6u@Lsu®y 1
o = o {(8up  K2aup) (Lo~ K?)

X (8u® + k20U + ke ou))

1
= w(&ug‘”(k%oau;% k3Loou

~ieouf’))
k2 42k?

— —={((8u?)3 = — ——. (27
7(0)(( 0 ) 37(0)

Now it can be shown that
(pviLouMy=v +k(vp— 3)

X('ﬂVi(GueOuel_vi) 5U(O)>

=v1+k(vy— %), (28

wherev, andv, are some constants. This result becomes
obvious if we consider Eq21) to the lowest two orders in
k, namely,

V3L U =VZ(6UggUe —

v2)6u'®, (29)

and, neglecting constants of integration, this becomes

L suM = (6ugoue;— V2)ou'?, (30)
which validates the result in Eq28). We proceed to con-
sider the next definite integral, namely,

<5u(0)(6ue0uel_ V u(l)> <5U(O)(6eruel Vl) 5U(1)>

6f

+0(k?), (3D

where there is no contribution at ordek because
su®=su{=0. The next definite integral to consider is

d 32m2
—xg 3% o

(V3L SUO) = < ( —
X (Lo—k?)(dup” +Kk? u<°>)>

=\/§k<x%((—§)>=0(k2).

(32

Finally,
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(86U 9 (BUgUgy+ 3u2; — V3) 6u(?)
= (U (BUgoUep+ 3uZ, — V3) 5u)

1002

63

+0(k?), (33

where again there is no contribution at orderbecause

su is equal to zero.

We put these results into E¢R3) to find that to the first

two orders ink,

)
Yo=Y _ :Ek+ Lo

k> 3 18 34
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which has the solutionsu(®=secl(x/+2), and y(9=0.
From Eq.(20) it is seen that the adjoint functiogr is no
longer bounded. This implies that we can no longer multiply
the linear equation, at each orderdn by ¢, and integrate
over all x, as we have done previously. Instead we use an
asymptotic matching method similar to that usefidh Here

we consider the asymptotic solution of the linear equation
(11, at each order ine. It is found that
=yM=,@)=0, and neglecting terms of order > and
higher, that

We continue to consider the linear Cahn-Hilliard equationWe now note that

(11) to higher orders ir. To ordere®, we again multiply the
equation byys and integrate over ait. Many of the definite
integrals are zero due to the functions being odd, and we are

left with »®)=0 for all k.

Using the same procedure on the linear equation to fourt

order ing, we find that

k 2
yW=- Z( (4900))+ 5(dug” ) : 39

— 3’}/(3)8 ’
lim Su=duxl— ———+0(&?). (39
N V2(1-K?)
[ C—
lim V2=—— —&2k2. (40)

dx

X— 00

lﬂ‘ we also assume that Iimocau:gjoce“, we find that
asymptotically Eq(11) becomes

(N2—2k2)(N2—2+0(¢))=0. (41)

where g(x) is some known function. Thus from this it is In this method we only consider terms which decay slowly

clear thaty{"=0.

We now combine our growth rate results and find that

'y=—\/?§k3— %k4+0(k5)+82 §k+ %kZJrO(kS))
+&%0(k)+0O(&®)
_ _E( K2+ 12) 1/2( K2+ m2_1)
3 z R2 z R2
11 m2\ 12 S k 1
X 1+$ k§+¥ )+o k5,@,@,$). (36)

Thus clearly a marginally stable state exists whea1l and

asx—oo, and so we choosk= —¢k,. Thus we can write
Suoce #KX=1— gk x+0(£2). (42)
Comparison of this result to that in E(B9) shows that
V2k,

z . T3 1
Y= 3R3 (l_kz)+o a y

(43

which is in agreement with E¢36). From Eq.(43) it can be
shown that to lowest order in R/ the maximum growth rate
is achieved whertk,= 1/(\/3R).

Also if k,=0, andm/R is written asem rather thark, it
is found that, up to ordes?, V2 is as given in Eq(37) but

k,=0, and wherm=0 andk,=0, in agreement with general With k; replaced bym. Thus again we apply the asymptotic
statements made above. Note that it is unphysical to considéiethod used 7], and find that to lowest order inR/the
perturbations wheren=0 andk,=0, since here the pertur- growth rate of perturbations is given by E@3), with k,
bations are purely radial, and so break the law relating taeplaced bym. This is verified by setting,=0 in Eq. (36).

conservation of mass in the system. lror- 1, y<<O, imply-
ing stability.

However, form=0, we see thaty can be positive and
hence the equilibrium is unstable kfR?< 1. This result is

confirmed if we return to the analysis of Ed.1), insist that

m=0, and introduce an ordering such thetk,=¢k,. If
this is performed, Eq(12) becomes

a2 d d — d
V2=—+s——s2(x—+k§ +e3x%—+0(e%).

dx?  “dx dx dx
(37
So, to lowest order iz, Eq. (11) becomes
d2
WLoéu(o): —yOsu®, (38

Note here, thay is never positive, since only takes integer
values. The above analysis confirms the general formyfor
given by Eq.(36).

So we have shown that the stationary solution is stable to
perturbations which involve any angular variatiom=0,
k,#0), but, for a radial perturbatiomm{=0) varying along
the axis of the cylinder, the stationary solution is unstable if
k,R<1. The growth ratey, for a particular value oR, is
plotted in Fig. 3.

D. Large-k analysis

In this section we consider solutions of E@.1) for k
large. Unfortunately the analysis is not trivial, and so we
must break the problem intg, large and(@ m=0, (b) m of
order 1,(c) m large.
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X 2 1
a Ue=tanh— — \/——tanr? @) . (48)

X
—+0
. V2 3R \2

To perturb about this stationary solution in spherical geom-
etry, we make the substitution

U= ug+ Su(r)(sin™g)F (cos)ertime (49)

into Eq. (1). Here kK is the associated Legendre function,

- wherel takes the valuefm|,|m+1|,|m+2|, . ... Thesub-
' sequent equation is the linear Cahn-Hilliard equation,
-0.12 namely
V2[V2+(1—-3u2)]éu=— yéu, (50)

FIG. 3. Growth ratd g= y(m,k,) — y(m,0)] againstk=k, for
R=3, and three different values oh. Grapha corresponds to Wwhich is as in Eq(11), but now
m=0. Graphb corresponds tam=1; graphc corresponds to

2
v a2 trar e (5D

For m=0, we find that the problem reverts back to thewherea=I(I+1) andue is now thespherically symmetric
one-dimensional case, with a correction at ordér It is  Stationary solution. It can be shown that E§0) has a mar-
found that ginally stable solution whea=2 (I=1). Clearly the prob-

@ lem is similar to that in cylindrical geometry, and, using

Y 1 0, Ye 1 either the consistency condition or asymptotic method, it is
K- -1+ 2| e +R2| 1O &R (44 found that the growth rate is given by
wherey®)=(3— /13)/2, and in principley(*) can be found. _ _£ T 1
For m of order 1, we find that Eq44) holds, but with a [OETE l(+DI-Di+2)+0 R/’ 52
slight correction at ordes? due to the finite value ah. It is o ) )
found that which is valid for yI(I+1)<R. We see that, ifl=1,
v=0, which verifies the statement above. Alsoli0,
y 1 7,(2)+ om2 1 1 v=0, which, as shown for cylindrical geqmetry, corrgsponds
= —1+ 2 7(c0)+CT> +O(F,$), (45  to the unphysical case of a purely radial perturbation. For
z z z JVI(I+1)>R, it can be shown that, to lowest order,
wherey(? is as above. 12(1 +1)2
Form large we considem/R to be of order 1. This alters Y= TR (53

the zeroth-order result in, which becomes

0 o) From this we see thay<0 for yI(I+1)=R, and so, for
© Ye I>1, the spherically symmetric solution is stable.

@ -t (46)

z z

IV. CONCLUSIONS
where y{9)=(3— \/13)/2—2(m/R)?. From this we see that
for m large the stability is increased. Thus we see from thesg |
. e Y
three cases that the stationary solution is stablekfdarge
along with any value ofm.

We have considered the existence and stability of both
indrically and spherically symmetric kink solutions to the
Cahn-Hilliard equation. In both cases, this is done by con-
sidering the radiuR of the solution as large, and scaling the
variables in its reciprocal. To lowest order we effectively
[ll. PROBLEM IN SPHERICAL GEOMETRY assume thaR— +«, and so the curvature of the solution
tends to zero. Thus here we revert back to the one-
dimensional case, which has a stationary kink solution. This
has been shown, in earlier papers, to be stable. We go on to
higher orders in R, andy is determined via two indepen-
—W+u.=C (47) dent methods, namely, a consistency condition and an
e e : ; Ci ;

asymptotic method, similar to those applied to the one-

dimensional equation if6] and[7], respectively.
Comparison with Eq(4) shows how similar this is to the We show that the cylindrically symmetric solution is
cylindrically symmetric problem. Again we make the substi- stable for allm andk,, of angular andz-dependent pertur-
tutionr =R+X, and find that there is no difference to zeroth bation, unlesgn=0 andk§R2<1. Thus for ageneralpertur-
order ine. It can be shown that bation, this stationary solution isnstable In contrast, it is

We begin by looking for a stationary solution to Ha).
The equation to be solved is

d?u, 2du
_29+__e
dr r dr
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found that the spherical equivalent is always stable. We ag-rycz, Infeld, and SamsofiL1]. In summary, our analysis
sume that the unstable cylindrically symmetric solution de-suggests that under certain conditions, the cylindrically sym-
cays to one or more spherically symmetric states. A similametric solution will pass through an unstable state, and tend
behavior has been found for a different physical situation byto one or more stable, spherically symmetric solutions.
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